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Faraday resonance in rectangular geometry 
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The motion of subharmonic resonant modes of surface waves in a rectangular 
container subjected to vertical periodic oscillation is studied based on the weakly 
nonlinear model equations derived by both the average Lagrangian and the two- 
timescale method. Explicit estimates of the nonlinearity of some specific modes are 
given. The bifurcations of stationary states including a Hopf bifurcation are 
examined. Numerical calculations of the dissipative dynamical equations show 
periodic and chaotic attractors. Theoretical parameter-space diagrams and numerical 
results are compared in detail with Simonelli & Gollub’s (1989) surface-wave mode- 
competition experiments. It is shown that the average Hamiltonian system for the 
present 2 : 1 : 1 external-internal resonance with suitable coefficients has homoclinic 
chaos, which was mathematically proven by Holmes (1986) for the specific case of 
2 : 1 : 2 external-internal resonance. 

1. Introduction 
Chaotic mode competition of parametrically excited surface waves has been 

attracting much theoretical and experimental attention. Ciliberto & Gollub (1985) 
studied experimentally the temporal evolution of two internal resonant modes, (4 ,3)  
and (7, 2) (eigenmode indices), in a circular cylindrical container and revealed a 
parameter region where periodic and chaotic mode (eigenmode) competition occurs. 
A more sophisticated experiment that included the bifurcation and hysteresis 
phenomena was done by Simonelli & Gollub (1989, hereinafter referred to  as SG 
1989), who investigated the dynamics of two resonant modes, (3, 2) and (2, 3), in a 
square and slightly rectangular container. 

Benjamin & Ursell (1954) showed that the linear problem of the parametric 
excitation is equivalent to  the Mathieu’s equation of each mode, thus causing 
theoretical interest to be focused on the evaluation of the nonlinearity. Two- and 
three-dimensional, spatially periodic gravity waves were analysed for a single mode 
by Tadjbakhsh & Keller (1960) and Verma & Keller (1962). An axisymmetric mode 
and two completely degenerate antisymmetric modes of gravity waves in a circular 
cylindrical container were respectively studied by Mack (1962) and Miles (1984b). 
The above studies used a perturbation expansion method, except for Miles (19846) 
who invoked an average Lagrangian method. 

Meron & Procaccia (1987) analysed the experiment of Ciliberto & Gollub (1985) 
and used the normal-form transformations to  derive associated dynamical equations. 
They expressed the coefficients of nonlinear terms in terms of correlation integrals, 
yet did not evaluate them. Miles (1989) pointed out that  Meron & Procaccia (1986) 
resulting equations do not lead to  the canonical formulations. A re-examination of 
Ciliberto & Gollub (1985) was done by Umeki & Kambe (1989) using an extension of 
Miles’s formulation. The original four-degree-of-freedom system derived by Umeki & 
Kambe to analyse the experiments of Ciliberto & Gollub can be reduced to a two- 
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degree-of-freedom system because each non-axisymmetric mode has two completely 
degenerate components and the associated angular momentum of each mode tends 
to vanish owing to the damping and the circular symmetry.? Umeki (1989) discussed 
the relation between parameters in a Hamiltonian function and the symmetry of the 
shape of the container. Using Umeki & Kambe (1989) and the present study the 
controversy between the results of Meron & Procaccia (1989) and Miles (1989) 
concerning the existence of canonical formulations can be clarified. 

Feng & Sethna (1989) have studied the bifurcations of surface waves in a slightly 
rectangular container both theoretically and experimentally. They gave explicit 
evaluations of nonlinear-term coefficients using the perturbation expansion method. 
Many of their experimental results were explained by their theoretical analysis. They 
predicted and observed travelling waves that are not addressed by SG (1989). 
Additionally Feng & Sethna (1989) prcdicted two different types of mixed wave 
states, although SG (1989) observed only one mixed wave in a square container and 
no mixed waves in a rectangular one. A direct comparison of Feng & Sethna (1989) 
and SG (1989) is difficult because dimensionless parameters u and /3 in Feng & Sethna 
do not directly correspond to SG’s (1989) experimental parameters, i.e. the 
amplitude and frequency of the external forcing. Nagata (1990) made a classification 
of stationary states of two completely degenerate modes (1, 0) and (0, 1) in a square 
container using nonlinear coefficients that varied with fluid depth. The general 
bifurcation problem of Faraday resonance in a square container was also studied by 
Silber & Knobloch (1989) using a two-dimensional map having D, symmetry. They 
suggested the necessity of fifth-order nonlinearity in their model in order to  
reproduce SG’s (1989) diagram. An experiment similar to  Ciliberto & Gollub (1985) 
was done by Karatsu (1988). He studied nearly degenerate (4, 1) and (1, 2) surface- 
wave modes in a circular cylinder, and observed periodic and chaotic mode 
competition. The experimental set-up and parameter-space diagram have been 
described in detail in Kambe & Umeki (1990), along with brief summary of Umeki 
& Kambe (1989) and the present study, which laid emphasis on comparison between 
experimental and theoretical results. 

In  the present paper, a general formula based on the average Lagrangian method, 
which is derived by Umeki & Kambe (1989), similar to Miles (1984a), including 
nonlinear capillary effects, is applied in order to  study the mode interactions in a 
rectangular container. In  $2, the nonlinear coefficients in some typical cases are 
evaluated. The previous results based on the perturbation method for the two- 
dimensional wave of Tadjbakhsh & Keller (1962), and for the three-dimensional 
wave of Verma & Keller (1962) and Fcng & Sethna (1989), are confirmed using the 
presented Lagrangian approach, although the first two coefficients were previously 
given by Miles (1976). 

In  $3, an analysis of SG’s (1989) experiments is made and the parameter-space 
diagrams are compared. A bifurcation diagram that includes Hopf bifurcation was 
obtained. Similar to the results of Peng & Sethna (1989), the presented stability 
diagram includes a mixed travelling wave state which was not observed by SG 
(1989). By numerically solving the third-order nonlinear model equations, periodic 

t Crawford, Knobloch & Riecke (1990) pointed out tha t  the additional phase instabilities, i.e. 
the  rotation of wave patterns, may occur in a circular container; however, they misunderstood 
theoretical results of Umeki BE Kambe (1989). Weakly nonlinear theory shows t h a t  the angular 
momentum of each mode tends to vanish, even if a mixed standing wave is excited, owing t o  the 
circular symmetry and linear damping. Notice that  this property does not hold for a rectangular 
container, see below. 
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and non-periodic orbits in the phase space are shown. In $4, the unforced 
Hamiltonian system with specific coefficients is shown to have a homoclinic orbit, 
and also that if forcing is added, both the stable and unstable manifolds intersect 
transversally. Holmes (1986) proved homoclinic chaos for 2 : 1 : 2 external-internal 
resonance, and this was numerically found in the present study for 2 : l : l  
external-internal resonance. The Melnikov function was calculated using a reduction 
method, under the assumption that the forcing and damping are small perturbations 
to an unperturbed integrable system. In the Appendix, a method of determining 
whether the Hopf bifurcation of the Mb state is subcritical or supercritical is 
described using calculation of the centre manifold. The effect of fifth- and higher- 
order nonlinearity on this Hopf bifurcation is also discussed. 

All results presented here are obtained by using the third-order nonlinear 
Hamiltonian system with linear damping. Higher-order nonlinearity, possibly 
achieved by changing the small parameters of slow timescale and nonlinearity, is not 
considered in the present study because the corresponding coefficients are not 
specified. The third-order model equation must be quantified before higher-order 
models are introduced. The efficiency of the third-order model equation is supported 
by the study of horizontally forced surface waves by Funakoshi & Inoue (1988) and 
also by Nobili et al. (1988), who demonstrated the coincidence between the 
experimental and numerical results. 

2. Formulation of nonlinear dynamics of surface waves 
Weakly nonlinear surface waves in a rectangular cylinder of an inviscid liquid with 

a density p are considered. Let (x,y) and z be the horizontal and vertical fixed 
reference coordinates of a container C having a cross-section S which is assumed to 
be independent of z, and with n being an outward vector normal to C. Let the 
boundary of S be denoted by as, with the free surface and the bottom being 
respectively denoted by z = q(t,x,y) and z = - d ,  where d is the depth of the 
undisturbed fluid. Assume that the flow is irrotational, thus allowing the velocity 
relative to C to be expressed by a velocity potential $ ( t ,  x, y, x ) ,  i.e. v = V$. 

The solution can be expressed in expansion form as 

$@, x, y, 2) = c $Ax, y) sech K i  d cash K i ( Z  + 4, ( 2 . l a )  
1 

s(4 z, Y) = CI Ti@) $&, Y ) ,  
i 

where {${} is the eigenfunction of the linear system ; 

with 

and 

(2.1 b )  

(2 .2a)  

(2.2b) 

(2.2c) 

where S,, is the Kronecker delta. 
For a rectangular cylindrical container of length 1, by I , ,  the eigenfunction is 

(2.3) 
mlcx nlcy 

$ i ( G Y )  = $'mn(x,Y) = { P - S ' m o )  (2--6,,)}tcos- cos - , 
1, 1, 
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with the wavenumber 
K,, = {(:y+(tTTn. 

A corresponding natural frequency is given by 

w,, = { g K m n  tanh K,, d( 1 + h2Ki,)}f, (2.5) 

where K = (y/pg)a is the capillary length. 

angular frequency 2w and the amplitude a,: 
The acceleration gZ due to  the external forcing is assumed to  be sinusoidal with the 

g, = 4a, w2 cos 2wt. (2.6) 

The amplitude of the displacement of the ith mode is represented by 

vi(t)  = eai ~ , ( 7 ) c o s ~ t + q ~ ( 7 ) s i n w t + e ( A ~  cos2wt+Bisin2wt+Ci}], (2.7) 

where ai - (K (  tanh K i d ) - '  and we put p i  = qc = 0 except for the subharmonic resonant 
modes i = (mi,ni) ,  i = 1,  ..., I (I  being the number of resonant modes), e( 4 1)  is an 
expansion parameter defined following (2.32), and 7 = e2wt is a dimensionless slow 
time variable expression the modulation of wave amplitudes. The amplitudes pi  and 
q, are respectively called in-phase and out of phase. 

The explicit form of the Lagrangian function in terms of 7 and ?j was derived by 
Miles (1984a) without nonlinear capillarity, and by Umeki & Kambe (1989) with it. 
Substituting (2.7) into the Lagrangian function, averaging it by t over the period 
2n/w, requiring A, ,  B,, C, to be stationary with respect to 7 ,  using the hypotheses that 
nonlinearity, forcing, and resonance are of the same small order and balance each 
other, neglecting the O(e6) terms, and dividing i t  by a3e4w2(a = a, z ai, i = 2, ..., I), 
a dimensionless Lagrangian function is obtained : 

where differentiation is performed with respect to 7 and where H is a Hamiltonian 
function with qi and p ,  being the conjugate variables of generalized coordinates and 
momenta : 

with (2.10) 

A ,  = a,/as2, (2.11) 

(2.12a, b )  

(2.14a) 

(2.14b, c) 
am2 

g.  = ~ {1-+2(2K2-Ki)}2, hi = & U 3 a i K : ,  
a 32a,w: 
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(2.15) 

(2.16) 

K = K~ x K ~ ,  i = 2, ..., I ,  

Clmn = 8-1 S, 91 +m 1c.n dxdy, 

Djlmn = 8-1 Js +j +lV+r,.V$ndxdy, 

Ejlrnn = 8-1 J (v+j*v+t) (V+rn.V$n)dxdy, (2.17 b) 

and LZ = p i p j - q Q i q j ,  Lij= Ptqj+qiPjoi, (2.18 a, b) 

Lij = P,Pj+qiq j ,  L;j = Ptqj -q iPj  (2.18c, d )  

Here the summation convention for the repeated indices (i, j, 1, m, n) is used, except 
in (2.14)-(2.18). Several algebraic inconsistencies contained in Umeki & Kambe 
(1989) have been made corrected. (See (2.9), (2.10) and (2.14a, b).) 

The presented formulae ((2.9)-(2.18)) are applied to analyse four special but typical 
gravity waves ( A  = 0). They are : Case (a) a single three-dimensional mode (m, m) in 
a rectangular container having arbitrary lengths ; Case (b) two degenerate two- 
dimensional modes (m, 0), (0, m) ; Case (c), two degenerate three-dimensional modes 
(m, n), (n, m) in a square container; and Case ( d )  a two-dimensional mode (1,O) and 
a three-dimensional mode (1,l) in a narrow rectangular container (1, B Z v ) .  In these 
cases the Hamiltonian function (2.9) is reduced to 

( 2 . 1 7 ~ )  

S 

H = x {ipi(P," + 9 3  + iwo(P," - d )  + + 9f)Y + C A P :  + 9 3  ( P i  + 9 3  + C4(P l  Qz - 91 P J 2  > 
i 

(2.19) 

where the c,, c3, and c4 terms vanish only for Case (a), and the coefficients c, are given 

(2.20 a) 

c, = D;+3E;+Fz+G,+Hz, (2.20 b) 

(2 .20~)  

(2.20 d) 

with the subscripts being denoted as 1 = (1,1,1, l), 2 = (2,2,2,2), 3 = (1,1,2,2), 
4 = (2,2,1, l), 5 = (1,2,1,2),  and ordered as (i, 1, m, n). Here the relations E; = E;, 
F, = F,, G, = G,, and H, = H ,  hold. The summation in (2.19) is used for i = 1 for 
Case (a) and i = 1 , 2  for Cases (b)-(d). 

Case (a) : single three-dimensional mode 

Harmonic resonant modes which interact with a mode 1 = (m, m) are 2 = (2m, 0), 
3 = (0,2m), and 4 = (2m, 2m). Non-vanishing correlation integrals (2.16), ( 2 . 1 7 ~ )  are 

by 
C1 = 0; + 3E; +F1$- GI + H I ,  

c3 = D; +D;+ a0; + 6E; + 12E; + 2F3 + Us + 2G, +4G, + 2H, +4H,, 

c4 = W ;  + W;-SD;  -4E; - 8E;-4F3-4Gs-4H3, 

'112 = '113 = 'Id2? '114 = i, 
Dllll = i ~ ' .  

The coefficient cl, (2.20a), is given by 

1 4T{3 + T-'( 1 - ti)}, 4T{3 f T-'( 1 - i?:)}, c --[- - 
- 128 4T--3, T, 4T - i3 T3 

(2.21 a, b) 

(2.21 c) 
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FIGURE 
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Normalized nonlinear coefficients c^,, ĉ ., for two degenerate two-dimensiona. modes 
of gravity waves in a square container versus dimensionless fluid depth K d .  See (2.24a-c). 

where T = tanhKd, Ti = tanhKid and ti = K i / K  (i = 2,3). The relation 

1 [ 4T{3 + T-'( 1 -ti)}' 
fi+Si+hi =- - + 1 + (2 - 2;) ~ - 2  + 4(2 - t i ) 2 r 4 ]  

64 4T-ti 

was used to calculate (2.22). Expression (2.22) agrees with Verma & Keller (1962) and 
Miles (1976). 

Case (b )  two degenerate two-dimensional modes in a square container 
Harmonic modes interacting with 1 = (m,O), 2 = (O,m), and both 1,  2 are 

respectively 3 = (2m, 0), 4 = (0,2m), and 5 = (m, m).  Correlation integrals are given 

'113 = c224 = I / d 2 >  c12, = l, (2.23a, b )  
(2.23c, d ,  e) 

(2.24 a)  

by 

D,,,, = D,,,, = i~ ' ,  D,,,, = D,,,, = K',  D,,,, = 0. 
The coefficients ci defined by ( 2 . 2 0 ~ 4 )  are 

c1 = c, = -( 2+3T-'+ 12T-4-9T-6), 

+ 11 -2T-,), (2.24 b)  

c4 = ---- ; :T-2. (2 .24~)  
The expressions (2.24a+) agree with Tadjbakhsh & Keller's (1960) results (see Miles 
1976) and (2.15) of Feng & Sethna (1989) where the equality below holds : 

(2.25) 

Figure 1 shows the coefficients (tl, I3,, t4) = (c, P, c3 T4, c4 P)  versus the dimensionless 
fluid depth, Kd. This normalization was chosen to avoid the divergence in the shallow 
water limit as K d + O .  It should be noted that the ratios of the mode-coupling 
constants c3 and c4 to the single-mode nonlinear coefficient c1 approach zero as the 
dimensionless depth approaches zero. However, the normalized ti values coincide 
with original ci values in the deep-water limit as ~ d +  00. 
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Case (c) : two degenerate three-dimensional modes in a square container 

The resonant modes are correspondingly numbered as 1 = (m, n), 2 = (n, m),  3 = 
(2m,O), 4 h = (0,2n), 5 = (2m,2nk6 = (2n,O), 7 = (0,2m), 8 = (2n,2m), 9 = (Im-nl, 
Im-nl), 10 = (Im--nl,m+n), 11 = (m+n,  Im-nl), = (m+n,m+2) (m =I= n). A 
circumflex is used to distinguish mode numbers from double modes (i.e. 11 from 1 and 
1, etc). Non-vanishing correlation integrals are given as 

c113 = c114 = c226 = c227 = l/d2, ( 2 . 2 6 ~ )  

c115 = cz2,  = cl,@ = c12G = c12fi = c12G = g, (2.26 b) 

(2.26c, d,  e) 

The equalities of the factors fi, gi, h, for i = 3 and 7, 4 and 6, 5 and 8, and 10 and 11 
hold owing to the symmetry of the system resulting from a 90" rotation 
transformation. The coefficients are given by 

D,,,, = D,,,, = $Y', D,,,, = D,,,, = K,, D,,,, = 0. 

4T{3 + T2( 1 - a:)}, 4T(3 + T-,( 1 - $)}, - 
4T--3, T3 4T-k4 T4 

+ 23 -%T2 + k:) T4 

1 4T{3 + T-,( 1 - -3i)}' - 4T{3 + T-,( 1 - k:,)}, 
- --[- 64 4T-k0T, 4T- t12 T12 

+44-8T-2+4(-8+-3i+-3:,)T-4 , (2.273) 1 - 8T(3 - T-,)' 
4T- 42T10 

C, = -a4 + 8 T 2  + ;( - 8 + ."; + K":,) F4}, (2 .27~)  

The equality (2.25) is in agreement with Feng & Sethna (1989) if the factor t on the 
right-hand side is instead unity. Expression (2 .14~)  of Feng & Sethna is misprinted, 
i.e. a 1 should be added in the square bracket. In the two-dimensional limit, m/n+ 
00, the coefficient cl, (2.27a), differs from that of the two-dimensional case (2.24a), 
as is pointed out by Verma & Keller (1962), yet the mode-coupling constants c3 and 
c, coincide with the two-dimensional values (2.243, c). Figure 2 shows the nonlinear 
coefficients normalized as (cA1,Z3,cA4) = ( c l P ,  c 3 P ,  c4T4), as a function of the 
dimensionless fluid depth K d  for the two-dimensional limit and (cA1,Z3,6,) = 
(cl P, c3 T4, c, P)  for m/n = 1. 

Case (d) : two modes (1,0), (1,l) in a narrow rectangular container 

Modes are numbered as 1 = ( l , O ) ,  2 = (1, l) ,  3 = (2,0), 4 = (0,2), 5 = (2,2), 6 = (0, 
l), 7 = (2 , l ) .  Assume I, 4 I ,  and mill, 4 1, and neglect the O((l~/l,)z, (xd/l,)2) terms. 
Non-vanishing correlation integrals are given by 

(2.28a, b) 

(2.28c, d, e) 
Dllll = 4 1 2 2  = D22ll = Dl212 = +K2, D,,,, = 2K2,  

C113 = C,,, = C,,, = C,,, = 1 / 4 2 ,  
The coefficients cl, c,, c3, cp defined by (2.20a-d) are given by 

C,,, = 1, C,,, = t .  

C, = &(2+3T-,+ 12T-,-9TP6), C, = &j(10+T-2+40T-4-27T-8), 
(2.29a, b) 

(2.29c, d) 
c3 = &(14-7T-2+44T-4-27T-s), C, = &( -6-2T-2-8T-4+9T-6). 

Figure 3 shows the coefficients cAi = c, P for i = 1, . . ., 4. 
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FIGURE 3. Normalized nonlinear coefficients d,, E z ,  E3, 6, for a two-dimensional mode (1 ,O)  and a 
three-dimensional mode (1, I ) ,  being nearly degenerate in a narrow rectangular container, versus 
non-dimensional fluid depth Kd. The coefficients are multiplied by the factor 'P for normalization. 
See (2.29a-d). 

Results corresponding to  SG's (1989) experiment, i.e. two modes: 1 = ( m , n )  = (3, 
2) and 2 = (n, m) = (2,3),  are now presented. The coefficients ci, including nonlinear 
capillary effects, are given by ( 2 . 2 0 ~ 4 )  with (2.12u)-(2.17 b ) ,  where the summation 
is similar to Case (c). Two modifications caused by the surface tension must be 
incorporated. One is the term Eilmn in (2.20) and the other is the shift of the natural 

K d  

FIQURE 2. Normalized nonlinear coefficients d,, E3. for two degenerate three-dimensional modes 
of gravity waves in a square container versus dimensionless fluid depth Kd.  Thick and thin curves 
denote the two-dimensional limit m/n co and m / n  = 1, respectively. See (2.27a-c).  
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d 

FIGURE 4. Normalized nonlinear coefficients c, versus d for two three-dimensional modes (3,2) and 
(2,3),  corresponding to the experiment of SG (1989). Thin (thick) curve denotes the value without 
(with) the surface tension. See (2.20). 

frequencies wi. The term EiLma in (2.20) is negligible, only a few percent of the other 
terms, although the shift of wi is not negligible in Fi when the fluid is shallow 
(Kd < 1) .  

The parameters used by SG (1989) were d = 2.5 em, 1, = 1, = 6.17 em for the 
square case and (Zz,Z,) = (6.17, 6.6) em for the slightly rectangular case. The 
wavelength was K - ~  x a x 5.8 mm. An n-butyl alcohol solution was chosen as the 
container liquid, having capillary length h = 0.176 em. Figure 4 shows the 
dependence of ci on the depth d for the square container with a fixed w = f(w, + w,).  
There are no 1 : 2  internal resonances for the gravity wave (thin curve) that  cause the 
ci coefficients to diverge. The dependence of ci on the external frequency w was also 
examined, but ci changed by less than a few percent and their signs remained the 
same when the value of f o ( = w / n )  was between 13.45 and 13.90Hz. The 
experimentally observed natural frequencies were often slightly different from the 
values obtained using (2 .5) ,  even when capillarity is taken into account. Thus the 
natural frequencies in pi can be replaced by wi = nfi, with fl = 13.60 Hz and 
fi = 13.80 Hz for the rectangular case, and f, = f, = 14.10 for the square case. The 
minimum excitation external-forcing amplitude 2a,,,, for excitation was taken a t  
120 and 140pm. Values of calculated nonlinear coefficients were 

( t l ,d3 , t4)  = (0.0756, 0.193, -0.428) (2.30) 

without capillarity and 

(C",,cA3,t4) = (0.0569,0.144, -0.44) (2.31) 

Using the Hamiltonian function (2.19), two-degree-of-freedom nonlinear evolution 
with it. 

equations of two subharmonic modes are given by 

(2.32) 
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Here, linear damping terms are phenomenologically introduced on the right-hand 
side, so as to express the dissipation effect in real fluids, which is important for the 
surface waves in a container. A small expansion parameter, e ,  is chosen as 
[(wE-wt)/2w2]i and z 0.12, so that the relation p1-p2 = 1 will hold for the 
rectangular case. A corresponding damping coefficient is a = aOmi,/asz. For the 
square, e is taken as (aOmi,/a)~ so that the damping coefficient a is unity. In this and 
the next section, the parameter p i ,  a, and A,  are assumed to  be within the same order, 
and thus the results are not dependent on the selection of E .  As long as p i ,  a, A,, p i ,  
and qi are bounded within the order 1, and 8 remains small, the higher nonlinear 
terms neglected in the presented analysis are evaluated as O(e2) and do not affect the 
stability given by the third-order nonlinear model equations. 

The angular momentum associated with rotation of the wave patterns is defined 

(2.33) 

Using (2.1), (2.3) and q5i = ai . i i+O(e2) ,  the angular momentum up to O(2 )  in a square 
container can be expressed as 

16(m2 +n2)Zz 
La,m, = pa3e2w (m2-n 2 ) 3 x 2 (P,q2-P2q,)~ 

for modes 1 = ( m , n )  and 2 = (n ,m)  with an odd integer m+n, and 

(2.34) 

(2.35) 

for modes 1 = (m,O) and 2 = (0 ,m)  with an odd m. When m+n or m is even, the 
integral in (2.33) vanishes and the total angular momentum is zero. 

3. Analysis of the dissipative dynamical equations 
The evolution equations for slowly varying amplitudes (p i ,  qi) of two nearly or 

completely degenerate subharmonic modes are expressed as a system of equations, 

p ,  = -ap l  + ( -pl + A ,  - A  , r: - Cri )  q1 +DMp2, 

q, = -aq,  + (p, + A ,  + A ,  r: + Cri)  p ,  +DMq,, 

p ,  = - a p ,  + ( -p2 + A ,  - A 2  T i -  Cri)  q, -DNp, ,  

q, = -aq2 + (p, + A ,  + A ,  4 + Cr:)p2 -DMql, 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 1 ~ )  

(3.ld) 

whereM= p ,q , -p2q1 ,  r: =p,2+qi ,  A ,  = 4ci for i = 1 ,2 ,C  = 2c3 and D = 2c,. A ,  and 
A ,  are distinguished from each other so that this analysis can be applied to a more 
general case (c, + c,) like two internally resonant modes in a circular cylindrical 
container in addition to the presented system having square symmetry. Eight 
independent parameters, A, ,  A, ,  C, D ,  01, p l ,  p2, A,,, can be reduced to six by rescaling 

There are four types of stationary states of the system ( 3 . 1 ~ 4 ) .  They are 
annotated as a quiescent state ( Q ) ,  a single mode-i standing wave (Si) and mixed 
standing wave (M). Note that mixed standing wave states are later classified as 
rotating and non-rotating waves. The quiescent state is linearly unstable if A ,  > 
(~: -a2) i  for i = 1 or 2. 

pi,  qi, and 7. 
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The stability of the Si state is obtained by solving eigenvalues of the linear 
equation with respect to a small perturbation @,, Q",, p, ,  q,) eAT. Calculations yield two 
quadratic equations : 

A,+ 2 a ~  + 4 [ ~ :  - a2 T@,(A: -a2):] = 0, (3.2a) 
A, + 2 a ~  + A  ;2{ (C - A  ,) (A: - a' )$ f ( A ,  pfl - CB, )> 

x [ (A ,+C+D)  ( A ~ - D ~ ~ ) ~ ~ { A , P , - ( C + D ) @ , } ]  = 0, (3.2b) 

where (m, n) = (1,2) for i = 1 and ( 2 , l )  for i = 2. Note that the first and second 
equations respectively indicate the stability in the direction of mode-m and -n. Si- 
is always unstable in the direction of mode-i; however, Si, is unstable in the direction 
of mode-j [(i,j) = (1,2) and (2, l)] if the constant term in (3.2b) is negative. 

The fixed points of all non-zero components can be solved as follows. Rearranging 
the (3.la-d) system into the form 

(3.3a) 

( m , n )  = (1, 2) corresponds to (3.la,b), and (m,n) = (2 , l )  to (3.lc,d). Setting the 
determinant of (3.3b) to zero leads to 

a2-Ai+ (@, + A ,  rL+Cr i )  {p, +Am rg + ( C + D )  r i } + A , D ( p i  - q i )  = 0. (3.4) 
Multiplying the upper rows of ( 3 . 3 ~ )  by q,, the lower rows by p,, and taking the 
difference between them gives 

(3.5) A,@; -qk)  = - (@, + A ,  r k  + C r i )  rk -DM2. 
Substituting (3.5) into (3.4) yields 

a2-Ag+ (@, + A ,  rk + C r i )  {@, + A ,  rk + ( C + D )  r i } -D(@,  + A f l  r i  +Crk) r i  

Taking the difference between (3.6) for (m, n) = (1,2) and for (m, n) = ( 2 , l )  
respectively leads to 

A @ + ( A , - C ) r : + ( C - A , ) r i  = 0, (3.7) 

(3.8) 

- D 2 W  = 0. (3.6) 

or PI +@, + (A , + C + D )  ri + (A,  + C + D )  r; = 0, 
where A@ = p1 -@,( = 1 for the slightly rectangular container, and 0 for the square). 
The mixed modes that satisfy (3.7) and (3.8) are respectively denoted Ma and Mb. 

If the system (3.1 a-d) is placed in a matrix form with d/dr = 0, then 

If the determinant of M is required to vanish, an expression for M is as 

where 
D2W = (@, + A ,  rt + Cri)  (@, +A,  ri + Cr:) -Ao -a2 f Deti, (3.9) 

Det = A; {A@+ (A ,  - C) r: + (G-A, )  ri}, -a'{@, +@, + (A,  + C) r? 

+ ( A ,  + C) ri>'+aA: a'. (3.10) 
Substituting (3.9) into (3.6) with (m, n) = (1,2) and (2, l) ,  and adding them leads to 

Det = (2a2+9V)2,  (3.11) 
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FIGURE 5. (a )  Parameter-space diagram in the (A,,/3,) plane for the rectangular case. Bifurcation 
curves of Ma from S1, of Mb from S1 and from 52, and a curve of exchange of stability between 
Ma and Mb are denoted respectively by C,, C,, C, and C,. ( b )  An enlargement of the region near 
point X and (c) near point Y. Stationary states in each region and their stabilities are classified in 
table 1. 

where U = Ap+ ( A  - C) T; + (C-A , )  T: ,  

V = A/3 + (A ,  - C - D )  T;  + (C + D - A  2)  T:.  

(3.12 a) 

(3.12b) 

For the Ma state, equating (3.10) and (3.11) yields 

p ,+A,T;+Cr:  = *(A,-c2): .  (3.13) 



Faraday resonance in rectangular geometry 173 
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Q S1, S1- 52, 82- Ma+ Ma- Mb 

a S l l l l l l l  

c s u u u u s / /  
d U U /  u u s  / / 
e U U l U l S 1 1  
f s s u u u l l l  
g u s  I U U I  I I 
I A U S  / U I  I I I 
i s  / I s U I  I I 
.i s I I u u I I (U ,S)  
k u I I u u I I W , S )  
~ ~ ~ 1 ~ 1 1 1 s  
m u 1  I s I I I I 
~ s / / s / l / I  
o ~ u / s / / / l  
P u / / s I / I rs,u1 
P u s / u l u l s  
r u s / u I u I [S,UI 
9 u u I u I s I [S,UI 
t u s I u I I I P7UI 
u u s I s I u I [S,UI 

b S U U U U S U /  

TABLE 1. Classification of fixed points. S, U and / denote stable, unstable and no fixed points, 
respectively. (U, S )  denotes U or S and [S, U] the multiplicity of stable and unstable Mb states. 

Substituting (3.13) into (3.9) and using (3.7) leads t o  

M = O .  (3.14) 

The Mb state can be obtained in an implicit form. Equating (3.10) and (3.11) and 

(3.15) 

Using the values (2.30), the nonlinear-term coefficients for both a square and a 
slightly rectangular container are given by 

A ,  = A ,  = 0.26, C = 0.32, D = -0.80. (3.16a, b, c) 

This indicates that the M a  state is non-rotating. 

using (3.8) yields 
( 2 a 2 + + ~ ~ ) 2 + a 2 ~ 2 ( r i  +ri)2 t 

A o = [  u2 + 4a2 I .  

Note that these values satisfy the inequalities 

C > A  > 0, D < 0, A + C + D  < 0, (3.17) 
which are equivalent to (2.17) of Feng & Sethna (1989). The case A ,  + A ,  was 
examined for the slightly rectangular container, but the difference between A ,  and 
A ,  was small and did not significantly affect the following presented results. The 
difference is considered as higher-order effects and is important if nonlinear effects 
higher than third-order are included. However, A/3 is an important factor in the 
presented analysis. 

3.1. Slightly rectangular case 
Using (3.7), (3.13) and (3.16), two Ma states can be distinguished: a larger amplitude 
one Ma+ and a smaller amplitude one Ma-, and they exist in the regions as 

(3.18) 
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FIGURE 6. For caption see facing page. 
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The Ma-state bifurcation curves from S1 are given by 

C , :  A , = { a ' + (  A ,  A, -C Pz - CPl )3i (3.19) 

The Mb state satisfies the relation 

P1+P2+(A,+C+D) ( r f + r i )  = 0 ,  (3.20) 

and must satisfy P1 +P, > 0 because A ,  + C + D  < 0 .  The bifurcation curves from S1 
and S2 are given by 

and 

C , :  A , =  a'+ -A,Pz+(C+D)P1 { ( A , + C + D  

c,: A , =  a,+ -A,P,+ (C+D)  Pz { ( A , + C + D  

( 3 . 2 1 ~ )  

(3.21 b )  

A numerical calculation in the experimentally investigated range of the forcing 
frequency and amplitude near the intersection point X (codimension-2 bifurcation 
point) of two instability curves of a quiescent state shows that A,, solved by (3.15) 
between r; = 0 and - (P,  +P,) / (A,+C+D),  is increasing monotonically, thus there 
exists a single Mb state between two bifurcation curves ( 3 . 2 1 ~ )  and (3.21b). 
However, asf, increases a multiplicity of Mb states is found. The stabilities of the Mb 
and Ma states were examined by a numerical calculation of eigenvalues of the linear 
equation of a small perturbation. It is found that Mb state becomes unstable (i.e. a 
Hopf bifurcation occurs) on the right-hand side of the point X. This type of Hopf 
bifurcation of mixed modes is interpreted as follows. The Mb state bifurcated from 
S1 is stable because S1 is stable as a result of its supercritical origin, yet the Mb state 
bifurcated from S2, which arises via a subcritical bifurcation, is unstable and loses its 
stability between the curves C,  and C,. A similar bifurcation with respect to the 
mode competition was shown by Golubitsky, Stewart & Schaeffer (1989, Chapter 
XIX). In SG's (1989) experiment, a Hopf bifurcation of the Mb state, if it  can be 
assumed to exist yet not to have been discovered, appears to be subcritical, rather 
than supercritical, because of the region G where pure (2,3) and time-dependent 
states coexist. A method of determining the sub/supercriticality of the Hopf 
bifurcation is established in the Appendix using the centre manifold theorem and 
normal-form theory. 

Figure 5 shows the schematic bifurcation diagram of stationary states for a typical 
case a = 1. The thin solid curves in figure 5 ( a )  (P, > P,) and in figure 5(a ,  c )  (P, > 
P,) denote the lower and upper boundaries of the Mb state. In the rectangular case, 
SG (1989) observed neither the Ma nor Mb state. The Mb state in figure 5 is replaced 
by the coexistence of the S1 and 52 state (region C in figure 9 of SG 1989). Note that 
the Ma, state in figure 5 exists far from point X, which is believed to be the reason 
why SG (1989) did not observe the Ma state in the rectangular case. The curve where 
the Ma and Mb states coincide is determined by substituting (3.7) into (3.15) : 

c,: A , =  [ a,+ { D(PI+PZ) )I: 
2(A,+C+D) ' 

(3.22) 

FIGURE 6. Schematic bifurcation diagram for the rectangular case, with various fixed frequency 
offsets PI. The horizontal axis denotes the forcing amplitude A,. Thick and thin solid lines 
respectively show stable and unstable stationary states. A Hopf bifurcation from the Mb state is 
denoted as 3. 
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FIGURE 7(a-f). For caption see facing page. 

with (3.23) 

The fixed points and their classification of stabilities are listed in table 1 .  At P1 = Pf 
the bifurcation from S1 to Mb changes from supercritical to subcritical. Bifurcation 
diagrams for various fixed PI are shown in figure 6. Schematic phase-space structures 
shown by figure 10 of SG (1989), except for region C ,  are well reproduced in figure 6. 
The regions A ,  B,  C ,  D of figures 9, 10 of SG (1989) correspond respectively to f, g ,  
h (and Z), m of figure 5 .  When P1 > Pb, the Mb state bifurcating from S2 is also stable 
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FIQURE 7. Numerical Poincark plots of M at q1 = 0, with various forcing amplitudes A,, a fixed 
frequency offset = 0.6 and nonlinear coefficients (3.16). The damping coefficient a is 0.1 (a- f ) ,  
0.2 (g, h)  and 0.75 ( i ) .  A Hopf bifurcation from Mb is supercritical for all cases. The same initial 
conditions may settle down on the distinct symmetric attractors as A ,  varies. ( d - f )  Self-similar 
structure of period-doubling bifurcation. 

because the bifurcating point lies on the stable branch of 52. (See figure 6 ;  Pb < 
P1 < 1 .) Thus the Hopf bifurcation of the Mb state disappears and periodic or chaotic 
orbits vanish. When PI exceeds Pc, the multiplicity of the Mb state appears. 
Moreover, when PI > /?,, the bifurcation points of the Ma and Mb states on S1 swap 
order and a transcritical bifurcation point emerges. 

The non-stationary-state bifurcation of the system presented, (3. I) ,  with the 
coefficients of (3.16) was examined by a numerical calculation of bifurcation 
diagrams. Figure 7 shows Poincare' plots of M at q, = 0, using various forcing 
amplitudes A,, and other parameters fixed. The initial condition is chosen as @, q,, 
p,, q2) + (0.01, 0, 0.01,O) where an overbar denotes the Mb state. A frequency offset of 
0.6 is present for P1 and three typical damping coefficients were chosen : (a) a = 0.1, 
( b )  0.2, and ( c )  0.75. Case ( c )  corresponds to  2a,,,, = 120 pm. The Hopf bifurcation 
of Mb is supercritical in all three cases, and additionally, when a exceeds a critical 
value (see case c), only periodic orbits appear in the time-dependent region. 

Typical examples of numerically obtained orbits are shown in figure 8. The 
numerical integration was carried out by the fourth-order Runge-Kutta scheme, and 
AT is taken as 0.01. There exist at most four symmetric attractors resulting from the 
symmetry (r,,  r ,)  + ( -rl, r z ) ,  (r , ,  - r2) ,  ( -rl, -r2). The period-doubling bifurcation 
was examined numerically in detail and observed up to period 26 as well as periodic 
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FIGURE 8. Numerical examples of the dynamical equations (3.1) with parameters (3.16), p1 = 0.6, 
a = 0.1 for (a+), and a = 0.75 for ( p ) .  Orbits are projected on the in-phase-amplitude (p,,p,)-plane. 
Note that p ,  and p, are proportional to the wave-mode amplitudes A,, and A,, of SG (1989). (a) 
A, = 0.66: periodic orbit with period-1, (b) 0.64: period-2, (c) 0.638: period-4, (d )  0.63775: period-8, 
(e) 0.637 : chaos, ( f )  0.6367: period-6, (9)  0.635: period-5, (h) 0.63065: period-3, (i) 0.63: chaos, (j) 
0.629: period-3, (k) 0.622: period-1, (1) 0.618: period-1, (m) 0.566: period-1, (n) 0.5: chaos, (0 )  0.448: 
period-1. The attractors (j), (k), (m) are asymmetric in the transformation ( r l ,  r , )+(r l ,  -r,). (p) 
Periodic orbits approaching a homoclinic cycle. The single mode-2 stationary state is denoted by 
52, and S2L 
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windows containing period-3, -5, and -6 orbits. The bifurcation point of per i0d-2~~ '  
to -2n is denoted by A:. The accumulation point was approximately A," = 

0.6374963.. . . The Feigenbaum number defined by 

A,n -At-' 
6 =  lim 

~ A:+' -A: 

was about 4.56 for n = 5, which was close to the universal constant 4.669 ... of the 
one-dimensional map. When A ,  is below 0.6295, a larger attractor appears where p ,  
takes positive and negative values. The asymmetric attractor (k) with respect to 
p ,  = q, becomes symmetric in ( I ) ,  which implies the symmetry-breaking (or 
symmetric saddle-node) bifurcation. 

For a = 0.75, a hysteresis is found where, for an initial condition near the Mb state, 
periodic orbits are obtained for A, below the stability curve for the zero solution. 
Moreover, as A ,  decreases, the computed period of the orbit increases, the periodic 
orbit approaches to a homoclinic cycle which consists of heteroclinic orbits connecting 
S2, and 52- and suddenly disappears (figure 8 p ) .  This type of bifurcation (homoclinic 
bifurcation) was observed by SG (1989) (figures 11 and 12). However, the appearance 
of the attractors presented here does not resemble theirs. 

The Hopf bifurcation depends strongly on the nonlinear coefficients. I n  Kambe & 
Umeki (1990), the value - 1.6, which was not the theoretically predicted one, was 
used for D instead of -0.8. In  this case the Hopf bifurcation was subcritical and both 
periodic and chaotic attractors appeared with 2a,,,, = 120 pm. 

3.2. Square case 

The bifurcation of two completely degenerate modes ( 1 , O )  and ( 0 , l )  in a square 
container was examined by Nagata (1989), who investigated the dependence on the 
depth of the coefficients A , , C , D .  Because the present study is focused on the 
relatively deep-water case, its square container case is included by Nagata (1989), 
who made no comparison with experiment, and the theoretical result of the 
bifurcation are similar to each other. Thus a brief comparison is made between the 
theoretical results and SG's (1989) experimental findings. Using B1 = p2, rm of the Ma 
state is expressed as 

Thus the region where the Ma+ - state exists is identical to S1, - and 52, states. The 
Mb state satisfies the relation 

2/3,+(Al+C+D) ( r i + r t )  = 0, (3.24) 

and exists if /I1 > 0. The bifurcation curves from the S1, 52 and Ma states are 

(3.25) 

FIQURE 9. (a) Theoretical parameter-space diagram corresponding to the square case (figure 4) of 
SG (1989). The signs denote stable fixed points. The regions of figure 4 ( b )  of SG correspond as 
follows: A to Ma, Q, B to Ma, C to Mb and D to S1, S2. The bifurcation curves between Ma and 
Mb (broken curve) and between Mb and S1, 52 (dotted-dashed curve) exist in the region fo > f*. 
although SG suggest that they are in the region fo < f*. ( b )  Schematic bifurcation diagrams. Note 
that the diagrams are invariant under the exchange of S1 and 82, owing to the square geometry 
of the container. 
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and A ,  = { a2 + (A,  ft+Dyr for Ma. (3.26) 

The parameter-space and bifurcation diagrams are shown in figure 9. (See also figure 
5 of Nagata 1989 and compare it with figure 9.) The multiplicity of Mb states 
appears when f o  increases, but this is not drawn in figure 9. A third-order model 
predicts that the Ma state is stable for fo < f* and the bifurcations from the S1 and 
52 states to the Ma state exist in the region fo > F*. SG (1989) show in their figure 
4(b) that pure modes (Sl and S2 in the presented notation) and their bifurcation to 
mixed states (Ma) exist only info < f*. The reason for this discrepancy which was not 
noted by Feng & Sethna (1989) is not still clear yet : however, fifth- or higher-order 
nonlinear terms may bend the bifurcation curves (3.25), (3.26) to the regionf, < f * .  
This difference certainly appears if the nonlinear coefficients are taken as satisfying 
the inequalities (3.17). 

Using (3.1), the temporal evolution of the angular momentum is given by 

& = - 2 d +  { - Ap+ (C-A , )  rf + (A, - C )  T:} k1p2 +Q, a,). (3.27) 

It should be noted that (3.27) has no forcing terms. When the system has circular 
symmetry (A, = A ,  = C )  and complete degeneracy (p, = p,), the angular momentum 
tends to vanish exponentially. This property also holds for the four-degree-of- 
freedom Hamiltonian system considered by Umeki & Kambe (1989). However, if the 
symmetry or the degeneracy breaks, the angular momentum can be maintained. 

4. Homoclinic chaos in the average Hamiltonian system 
Non-periodic mode competition of surface wave systems for the specific resonance 

condition was also considered for a conservative system (Holmes 1986) from the 
viewpoint that a small perturbation breaks the integrability of the Hamiltonian 
oscillation system. The present 2 : 1 : 2 external-internal Faraday resonance is studied 
using this idea. If the following two successive canonical transformations are 
selected : 

(q i ,p i )  = ((2Pi)tcosQ,, (2P,)tsin$,), i = 1,2, (4.1) 

Q 1 = Q 1 + Q 2 ,  Q 2 = Q 2 ,  p2=Pp,-Pl, @1=Pp,, (4.2) 

the dynamical equations ( 3 . l a 4 )  can be put in the form 

Pl = -2DP,(P,-P,) sin 2Q, - M O P ,  sin 2(Q, + Q,) -2aP,, ( 4 . 3 ~ )  

&, = A/?+EP,+FP2-D(P,-2P,) C O S ~ Q , - A , { C O S ~ ( Q ~ + Q ~ ) - C O S ~ Q ~ } ,  (4.3b) 

P, = -2A,{P,sin2(Q,+Q,)+(P,-P,)sin2Q,}-2~,, (4.34 

Q, = p, +2A, P, +FPl -DP, cos 2Q1 -A,  C O S ~ Q , ,  (4.3d) 

where E = 2(A1+A2-2C-D), F = 2(C-A2)+D, (4.4a, b)  

and the total Hamiltonian is given by 

H = H,+H, ,  (4.5) 
H ,  = p1 Pl +B,(P, -P1) + A ,  P; + +A,(P, -PJ2 

+ (2C +D)  Pl(P, -PI) -DP,(P, -PI) COB 2Q1, (4.6a) 

H ,  = -Ao {P, cos 2(Q,+ Q,) + ( P 2  -PI) COB 2Q&. (4.6b) 
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When there is no external forcing and damping (A, = a = 0), this system has two 
conservative quantities, H ,  and P2, and is integrable. The heteroclinic orbits in the 
(P,, &,)-plane approaching P, = 0 lead to the relation 

A/3 + FP, + $TP, 
COS2&, = 

D(P,--P,) * 
(4.7) 

Here D =I= 0 is assumed. Thus the heteroclinic orbits connecting to the points P* : (P,, 
&,) = (0, iarcos [(A/3+FP,)/DP2]) exist if 

Similarly for the orbits connecting Pl = P2, the condition is 

A 8  - FP2 
- 1  < < 1. 

DP2 
(4.8b) 

From (4.8), the following relation holds: 

& 1 + & 2  = /32+(A,--A,)P1+~2P2. (4.9) 

It should be noted that the system for the completely degenerate non-axisymmetric 
modes in a circular container has no heteroclinic orbits since A/3 = 0 and A, = A, = 
C. The heteroclinic orbit connecting to the saddle point P* is given by 

P1(7) = f 2P1 [D'P; - (A/?+FP2)2 -{2D2P2 +E(AP+FP2)} P, + (D2 -$!#2)P3i, 

((4.10) 

(4.11) 

= Q37)  + &203 (4.12) 

Similar to Holmes (1986), a Poincar6 map is considered on the cross-section Q2 = 
const. based on the reduction method, which assumes the existence of homoclinic 
orbits (strictly speaking, heteroclinic orbits in the (P,, &,)-plane) and Q = aH/aP2 + 0 
in the neighbourhood of the homoclinic orbits. The first assumption can be satisfied 
if parameters are chosen so that ( 4 . 8 ~ )  or (4.8b) holds. In order to satisfy the second 
assumption, e2, which can be expressed by G1, Pl, etc. using (4.9) or its correspondent 
to the (4.8b), must remain of the same sign on the homoclinic orbit. These two 
assumptions give restrictions on the parameters appearing in the Hamiltonian. 

When a small external forcing is added, homoclinic orbits becomes split and stable 
and unstable manifolds intersect transversally . This intersection brings Smale- 
horseshoe mapping and Cantor sets in the neighbourhood of perturbed homoclinic 
orbits (see Guckenheimer & Holmes 1986). Using the notation yE = (P,,Q,), the 
perturbed dynamical system (4.1) can be rewritten as 

YA7) = wo(yE,P2J + E W ~ ( Y ~ P ~ E ,  Q 2 J 9  ( 4 . 1 3 ~ )  
p2,(7) = E W ~ ( Y ~ , P ~ ~  Q 2 A  (4.13b) 

O 2 A 7 )  = Q(Y,,P~J, (4.13 c) 
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e implies a small parameter of the forcing and damping and the subscript e denotes 
the perturbed orbit. Here two small parameters e and E introduced towards the end 
of $2 should be distinguished. Here the forcing A ,  and damping a are small 
compared with AP,although they are in the same order in the previous sections. The 
amount of splitting of stable and unstable manifolds is given by the Melnikov 

mp203 Q 2 0 )  = %(Yo) [Y,"-Y,Sl. (4.14) function 

where y,"~, denotes the perturbed orbits on unstable and stable manifolds, 

is (the (P,, Q,) components of) the normal to the unperturbed homoclinic orbit. The 
first variational equation gives 

(4.15) 

where the wedge product is defined as a A  b = a,b,-u,b,, Dpz denotes the P, 
derivative, and 

I (7 )  = - w,d7. L 
Using the following relations : 

aH0 

ap1 
Wo A e W 1 =  {Ho,  H J Q , ,  p, + 2 d 1 ~ ,  

H 
d ( 7 )  = --'+201p,~, sz 

Q , , P ,  denotes a Poisson bracket: { f , g } s , , p ,  = 
aQi aPi api aQi 

an explicit expression is obtained for the Melnikov function which includes the 
damping terms as 

JW'20, Q20)  = W, {(Ils +I2, +I3,) sin 2&,, + (I,, +I2, +M cos W,,> + WI, +I&), 
(4.16) 

(4.17 a )  I,, = -DP,(P,-P,) (sin 2&: +sin 2Q1 cos 2 Q t )  d7, 

I,, = [Yrn -DP,(P, - P l )  (cos 2Q: -sin 2&, sin 2Q;) d7, (4.17b) 

I,, = ~~w{A~+EPl+FP,+DPlcos2Ql}Plsin2(Q1+&:)d7, ( 4 . 1 7 ~ )  

I,, = I-, {Ap + EP, + FP, + DP, cos 2Q,} PI cos 2( Q, + Q,*) d7, (4.17 d )  

I, where 

W 

a3 

I,, = S _ w ~ ~ l s i n 2 ~ , { ~ p + ( ~ + ~  ) ~ , + ~ ~ , c o s 2 ~ , }  

x {P,cos2(&,+&,*)+ (P,-P,) cos2Q,*}/Qd~, (4 .17e)  
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I,, = DP, sin 2&, {A/? + ( E  + F ) P, + DP, cos 2&,} I:* 
x {-~,sin2(&,+&,*)-((P2-P,)sin2&,*}/~d7, (4.17f) 

I4 = {Ap+EP, +FP, +D(2P, -P2) cos ZQ,}  P, d7, (4.179) 

DP, sin 2&, {Ap+ (E+ P) P, + D  P, cos 2&,} P2 7 d7. (4.17 h) 

Thus the Melnikov function has simple zeros if 0 < CL < A,.  This implies the existence 
of uncountable non-periodic orbits as well as countable many periodic orbits. These 
expressions can be simplified if P,, Q1, Q,* are even or odd functions with respect to 

I5 = - s_mm 

7 .  

The following three cases were considered as examples: 

Case ( a ) :  A ,  = A 2  = C = -3, D = -4, P2 = 0.25, = 0, p, = - 1 ,  (4.18) 

Case ( b )  : A ,  = A ,  = D = 2, C = 1,  P, = 1.0, p1 = p, = 0, (4.19) 

Case ( c )  : A 1 = A  2 -  - C = D =  1, P 2 =  1.0, pl=p,=O. (4.20) 

A nearly degenerate case (a) possesses a homoclinic orbit expressed as 

P1(7) = Qsech7, 

Q1(7) = 2 arctan (e'), 

QA7) = -&,(TI+ (p2+242P2)7+@++2(0). 

Case ( b )  represents the completely degenerate mode-pair and heteroclinic orbits : 

e47 
P1(7) = - = &1(0). 

Complete degeneracy with circular symmetry is exemplified by case ( c ) ,  which has no 
homoclinic or heteroclinic orbits. The numerically obtained Poincar6 sections are 
shown in figure 10. The forcing is taken as A,  = 0.2. The initial conditions are chosen 
to take the same value of the perturbed Hamiltonian as in case (a) and Pl(0)  = 0.5, 
&,(O) = 2x/50, 4x/50, ..., 2 x ,  &,(O) = 0. Stochastic layers are found in case (a) and 
( b ) ,  but not in (c ) .  

The experimentally observed mode competition of surface waves in a (small) 
container is considered as a motion on a strange attractor. It was found that the 
condition SZ + 0 did not hold for the numerically computed strange attractors drawn 
in figure 7. This implies that the mathematical proof of homoclinic chaos of a 
Hamiltonian system does not necessarily apply to the observed mode competitions 
of surface waves. It should be stressed, however, that both Hamiltonian and 
dissipative surface-wave systems can possess chaotic motions when the degeneracy 
or the circular symmetry breaks. 

1+e47' 

5. Conclusion 
A theoretical analysis of the subharmonic response of two resonant modes of 

surface waves in rectangular and square containers is made based on the third-order 
nonlinear dynamical system derived by the average Lagrangian method. Estimates 
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FIGURE 10 (a. b ) .  For caption see facing page. 
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FIGURE 10. Tyo-dimensio?al projection of a Poincar6 map with respect to Qz = 0 (mod2x) on the 
(x, y) = ( (2P1)r cos Ql, (2P1)3 sin Q1) plane. (a) : nearly degenerate case ; (b)  : completely degenerate 
case ; (c) completely degenerate and circular-symmetric case. In ( a ) ,  the initial conditions are 
chosen on the same level surface H = const. 

of nonlinear coefficients are made for some typical case including capillarity. The 
previous results for gravity waves obtained by the perturbation expansion method 
are reproduced. The two different methods are confirmed to lead the same results up 
to the third-order nonlinearity. The formula for coefficients is applied to the 
experiment of Simonelli & Gollub (1989) and the bifurcations of stationary states are 
examined. The similarities and differences between the theoretical results obtained 
by the third-order nonlinear model and the experimental findings by SG (1989) are 
clarified. It is shown that the periodic mode competition occurs from a Hopf 
bifurcation, which is supercritical for the predicted nonlinear coefficients of gravity 
waves but may become subcritical for slightly modified values of the coefficients, of 
a mixed rotating wave (Mb) state for the slightly rectangular case. If the damping 
coefficient u is sufficiently small, the periodic orbits in the phase space bifurcate into 
the complicated orbits. The stable stationary states are shown in the parameter 
space of the amplitude and the frequency of the external forcing. The theoretical 
diagram includes a mixed rotating wave (Mb) state, which was not observed by SG 
(1989), and the region for Mb is replaced by a region of coexistence of two single 
modes. 

Bifurcations from single (pure) modes to a mixed modes in a square container are 
obtained. The theoretical diagram for a square container show bifurcations in the 
region fo > f*; on the other hand SG (1989) shows them info < f*. 

The existence of transversal intersection of homoclinic orbits in the present 
average Hamiltonian system with suitable parameters is shown based on the 
Melnikov's method. The homoclinic chaos is demonstrated numerically. The relation 

7 FLM 227 
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between homoclinic chaos in the conservative system and strange attractors in the 
strongly dissipative system is discussed. The rigorous proof of homoclinic chaos does 
not directly apply to the strongly dissipative system, as is observed by the 
experiment in a container, since the assumption for the reduction method is not 
satisfied. 

Finally, two advantages of Miles’ average Lagrangian formulation to the 
perturbation expansion method are stressed. First, an explicit Hamiltonian structure 
of mode interactions is obtained as well as the external forcing and capillarity. 
Second, extension of the system to involve more than three internally resonant 
modes appears to be easy. 

The author would like to  thank Professor John W. Miles for critical comments and 
invaluable advice on his manuscripts, and for allowing him to recheck Miles’ previous 
results. He is also grateful to Professor Funakoshi for useful discussions. 

Appendix. Determination of the sub/supercriticality of the Hopf 
bifurcation 

A theoretical analysis in $3 shows that the mode competition of surface waves 
originates in the Hopf bifurcation is described using the calculation of the centre 
manifold. This calculation may be particularly important when the effect of higher 
nonlinearity on the Hopf bifurcation is discussed. 

First we rewrite the system (3.1) in the form 

where the repeated indices imply summation, and the variables are 

(Zl?Z21% Z4) = (1311132, Q1, 

The 4 x 4 matrix Ti is defined by 

- 1 if ( i , j )  = (1,3),  (2,4), 

T. d = [ 1 if (i,j) = (3, I ) ,  (4,2), 

0 otherwise, 

and the Hamiltonian function is expressed as 

H = H , + H N ,  

H L  = cij Z( z j ,  H N  = cijkl Zi Z5 Z k  Z 1 .  

The coefficients ci j  and ciikl, which are symmetric in all subscripts, are given by 

+(Pi+A,) if i = j  = 1,2,  

if i = j = 3,4,  (A 7) 

otherwise, 

c . .  = 
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and 

' i j k l  = 

+A1 if ( i , j , k , I )  = ( 1 ,  1 , 1 , 1 )  and (3 ,3 ,3 ,3) ,  

+A2 if ( i , j , k , I ) = ( 2 , 2 , 2 , 2 )  and (4 ,4 ,4 ,4) ,  

+5 1 if ( i , j , k O  = (1,1,3,3),(1,3,1,3),...,(3,3,1,1), 
*5 2 if (i,j, k , I )  = (2 ,2 ,4,4) ,  ..., (4,4,2,2),  

&(C+D) if (4j, k, I )  = (1 ,1 ,4 ,4) ,  . . ., (4 ,4 ,1 ,  I ) ,  (2 ,2 ,3 ,3) ,  

..., (3 ,3 ,2 ,2) ,  
if ( i , j ,  k, I )  = (1 ,2 ,3 ,4) ,  . . ., (4,3,2,  l ) ,  - &D l o  if otherwise. 

Second, denoting by pi the Mb state which is solved by the method in $3, we 
transform variables so that  the origin coincides with Mb : 

zi = p,+pi .  (A 9) 

H = B,+B,, (A 10) 

BL = P j +  %jkl P k p l  pi Pi? (A 11)  

(A 12) 

Substituting ( A 9 )  into the Hamiltonian ( A 4 ) ,  and using the symmetry of the 
coefficients cijkl, we obtain 

Hli  = cijkl  Pi Pj P k  Pl + 4cijkC pl Pi Pj P k .  

Constant and linear terms can be omitted in the Hamiltonian. The dynamical 
equations are described as 

aH 
p i  = - a p i + q j - ,  

aPj 

where 

I n  the Hamiltonian case (a = 0 ) ,  there is a property of the Jacobian matrix II of (A 
13) whose component is defined by 17,, = api/ap,. That is, if A is an eigenvalue of II, 
then so are h, -A ,  and -h where an overbar denotes the complex conjugate. This 
property leads to  the Jacobian matrix of the non-Hamiltonian case (a + 0) having 
eigenvalues A - a ,  h-a, - A - a ,  and x-a,  because damping terms with a common 
coefficient only shift the eigenvalues t o  the real negative side. 

When the Mb state looses its stability, one of the eigenvalues must cross the 
imaginary axis. If the eigenvalue is real, the bifurcation implies another branch of 
stationary states. Because there are no such branches, the eigenvalue must be pure 
imaginary, and the above property implies that  there are a pure imaginary pair 
( iw) and a complex pair ( - 2a f iw). Here the real part - 2a comes from the fact 
that  the total sum of the eigenvalues must be -4a. 

Third, we perform a standard-form transform so that  the linear part of (A 13) is 
represented in a block-diagonal form. Rewriting the system (A 13) into the form 
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where X i j p j  and Pi denote respectively linear and nonlinear terms, we transform pi 
into xi as 

The 4 x 4 transform matrix Bij satisfies the relation 

- 
pi = Bij x j .  (A 19) 

and the 4 x 4 block-diagonal matrix Cij is 

(A 21), (A 22a, b )  
The equations for the new variables xi are given by - - 

*i = c i j x i + x i  
where nonlinear term Zi is 

- I  - -  - xi = &? TiVy F&,, Blft B,,,,, x1 x ,  +& !&. Fj,l,m,,, BlPl B,,, Bnfn x1 x ,  x,. (A 24) 

Moreover, rewriting the variables as ( x l ,  x,, x3, x4) = (x1 ,z2 ,  yl, yz), or simply = ( x ,  y), 
the system becomes 

xi  = Clijxj+fi(xj Y), 

Oi = Czij yj + Gi(x, y), 

(A 25) 

(A 26) 

where f ( 0 , O )  = g(0,O) = 0 along with its derivatives. 
Since we are considering the Hopf bifurcation point with codimension-1 of the 

four-dimensional system, the centre manifold theorem implies that there exist two- 
dimensional stable and centre manifolds of the Mb state which are respectively 
tangent to the x1 = x2 = 0 and y1 = y2 = 0 plane. Thus we may approximate locally 
the centre manifold as a quadratic function of x l ,  x2 as 

y1 = hl (x)  hijxixj+O(x3).  (A 27) 

xi = c l i j x j++f i ( x ,h (~ ) ) ,  Oi = C2ij~j. (A 281, (A 29) 

The local flow close to the Mb state is equivalent to the system 

In order to determine the sub/supercriticality of the Hopf bifurcation of (A 28), 
the second- and third-order nonlinearity of f i ( x ,  h (x ) )  is sufficient. For a detailed 
discussion, see Guckenheimer & Holmes (1985, ss3.2-3.4). Owing to y = O(x2),  the 
necessary nonlinear terms are 

f l ( x ,  Y) = fljzxxi xj +AjzYxi yj +AjFzi xj x k ,  + O(x*), (A 30a) 

91(x, y) = g : j ~ ~ x i x j + o ( x 3 ) ,  (A 30b) 

where A,”“ = B,? Tisf F&,. Blu B,,, (A 31) 

f l , x Y  = 2B,? Taj. F:,lfm. Blfi Bmrjf2, (A 32) 

xjrx = B,? Try F&m~n. Bl.i B,.j Bnek, (A 33) 

(A 34) gi jxx  = B;,!2ir Tis3’ F!rl.m. Blfi B,,, for I ,  i, j, k = 1,2. 

The coefficients Aj””, g:j””,Aj;”” and hfi are symmetric in all subscripts, but AjzY is 
not. Substituting (A 27) into (A 26), using the chain rule and keeping O(x2) terms, we 
obtain 

2hLi xi Clkj xi = CZlk hz xi x j  +gfj”” xi xi. (A 35) 
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Symmetrizing the coefficient of x i x j  on the left-hand side of (A 35), we obtain the 
relation to be solved for hf,: 

hti C lk i  + h& CZki - C21k h: = g i j x x .  (A 36) 

Using the notation (hi ,  hi ,  hi)  = (hi l ,  hi,, h;,) and the same notation for gz, (A 36) 
becomes 

d i i h i + w h i  = gt, wh;+di,h,2 = g i ,  (A 37a, b )  

where d, is a 3 x 3 matrix defined by 

-2w 2a 

Using the values hi, which can be obtained by solving (A 37), the xi yi term in (A 30) 
is expressed as 

where the coefficient is symmetrized again. The nonlinear terms in (A25) are 
approximated up to 0(x3) as 

f ijxYxi y j  = $( f :;nZYhg + f j ; n Z Y  h g  + f 2;Y h;) xi xi x k ,  (A 39) 

fi(x, h ( x ) )  = f i ~ z ~ ~ x j + , f ~ ~ x ~ x j x k ?  (A 40) 

where jy =jp, (A 41) 

(A 42) Aj; = f i j y  + f(  figy h g  +$;nZy hg  h; ) . 
The normal-form theory means that the system (A 28) can be reduced in polar 

coordinates to 

The normal-form coefficient Ci is calculated by the coefficients (A 41), (A 42) as 

i = ~ i ~ 3 + 0 ( ~ 5 ) ,  e = w + b A r 2 + 0 ( r 4 ) .  (A43),  (A44)  

(A 45) 

which is equivalent to the formula (3.4.11) in Guckenheimer & Holmes (1986). The 
calculated value of 6 is negative for the case (3.16) and the values of a and /3 used in 
$3  and it implies that the Hopf bifurcation is supercritical. 

Now the effect of higher nonlinearity on the Hopf bifurcation is discussed. The 
fifth-order nonlinearity is introduced in the Hamiltonian (A 4) 

= C i j k l m n Z i Z j Z k Z I Z m Z n ~  (A 46) 

where the coefficient ciiklmn is O(2) .  There are two kinds of modification of the 
normal-form coefficient 6. One is a shift of the Mb state pi.  The other is the 
appearance in the dynamical equation (A 13) of additional terms: 

Because these two modifications are O(r2), the effect of higher nonlinearity on 6 is 
also O(r2), and does not change the sign of 6 if the expansion parameter is sufficiently 
small. This ensures that, when the parameters are close to the codimension-2 
bifurcation point X, the third-order nonlinear theory explain the periodic motion 
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well because Ci is positive. I n  fact, as PI tends to  0.5, both w and coeficientsfij* tend 
to zero, but their ratios remain finite. As the parameters go far from X, however the 
sign of Ci may change. When Ci is positive, the coeficients of r5 in (A 43) should be 
calculated in order to obtain a finite-amplitude periodic orbit. 
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